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Abstract
In this volume in honour of GianCarlo Ghirardi, I discuss my involvement with
ideas of dynamical collapse of the state vector. Ten problems are introduced,
nine of which were seen following my initial work. Four of these problems
had a resolution in GianCarlo Ghirardi, Alberto Rimini and Tullio Weber’s
spontaneous localization (SL) model (which added one more problem). This
stimulated a (somewhat different) resolution of these five problems in the
continuous spontaneous localization (CSL) model, in which I combined my
initial work with SL. In an upcoming volume in honour of Abner Shimony, I
shall discuss the status of the remaining five post-CSL problems.

PACS numbers: 03.65.Ta, 02.50.Ga

1. How I got into this

To be, or not to be: that is the question.

The editors’ charge is to ‘ . . . share with the widest possible community your views on
quantum theory . . . with the emphasis on conceptual developments, both those achieved and
those hoped for,’ and to give a ‘ . . . personal assessment of the role of quantum theory in your
work . . . .’ The word ‘role’ brought to mind the role of Hamlet when, in Act III, Scene I, he
delivers the lines quoted above. For, my professional life has mostly been devoted to going
beyond standard quantum theory, which describes what might be, to construct a theory which
separates what is to be from what is not to be, i.e., a quantum theory of reality.

The personal and the professional are highly intertwined. Although the former is usually
expunged from papers, I imagine it need not be so here1. Like most of us, my first encounter
with quantum theory was in college, but for me it was a career-changing experience. I was in a
cooperative program in electrical engineering, which involved alternately working at Bell labs

1 I have written in an autobiographical vein once before [1]. There is necessarily some anecdotal overlap, which I
shall try to minimize. However, the present paper conceptually stands on its own.
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and MIT until I got two degrees and could, presumably, go out and earn a living. While I was
at college, some of my best friends were physics majors, inclined towards theoretical physics.
When their conversation touched quantum theory, I felt left out of some arcane, mysterious
realm. I therefore enrolled in the introductory course in quantum theory. It was taught by
Felix Villars, and our textbook was Bohm’s [2].

I did not understand very well what was going on in either the lectures or the book. Why
was there so much stuff about waves when we were talking about particles? In electrical
engineering, we knew the difference between waves and particles. I kept waiting for the
teacher or the book to tell me where the particles are. Halfway through the course, when we
got to the harmonic oscillator, it dawned on me that they were not ever going to tell me where
the particles are. I got upset.

I had never before gone to a teacher’s office hours, because I could figure things out for
myself. But, I had thought as hard as I could, and I had come up with a question which I could
not answer. In classical mechanics, given the particles’ initial positions and velocities, you
could use Newton’s second law to predict them forever after. Well, apparently Schrödinger’s
equation was the replacement for Newton’s second law since, given the initial wavefunction
you could use Schrödinger’s equation to predict it forever after. I could see how one could get
particle initial conditions: they are ‘there’. But, the wavefunction is a complicated thing, with
lots of ins and outs, and complex to boot, and it is not ‘there’. So I went into Professor Villars’
office. No one else was there. I asked him my blockbuster question: ‘Where do you get the
initial wavefunction?’ And his answer was immediate: ‘From the previous wavefunction.’

My instantaneous reaction was, that is not right: it was as if he had said that you never
needed initial conditions in mechanics. But, he immediately qualified it, for what he meant
was ‘From the wavefunction which resulted from the outcome of the previous experiment.’ I
do not now remember much of what he said thereafter, but I remember feeling, as I left, that
my question had been answered, I guess, but I felt a disquiet.

Only after reflection was I able to articulate it to myself: instead of a one-time application
of initial conditions, it appeared that they had to be applied endlessly. It seemed one could
not do quantum theory unless repeatedly interrupted by an experimenter bursting in with the
latest news. Part of the charm of theoretical physics to me was that it had the aura of a heroic,
independent enterprise. One could do it alone, with just a pencil and paper, much like my
dad, who was a CPA, and who, many evenings, would sit at a card table surrounded by lots
of papers, beautifully writing important numbers in neat columns in large lined books. But,
every day, he had to go out to get information from businessmen. Apparently, doing quantum
physics was just like doing accounting: one needed a pencil and paper and information from
experimenters.

I learned to play the game in order to pass the tests, but I was not happy with the subject.
I could not believe that this was the best that could be done, that there was not more to it than
I was being taught. However, one day, near the end of the semester, Professor Villars told us
something which, as much as anything else, put me on the road to my life’s work. He said
that there was a section at the end of the book which he was not going to assign but which
we could read if we were interested. In it, Bohm describes an argument due to Einstein, that
quantum theory is not the last word, but which Bohm then refutes.

That put me instantly on alert. To a Jewish boy growing up in the South Bronx before,
during and after World War II, Einstein was a revered figure. When my mom proudly showed
my grade school report card to my Hungarian grandma who lived across the courtyard, she
would pat me on the head and pronounce, ‘A leetle Einshtein.’ At a later age, around the block,
when playing slug, stoop ball or stick ball with a ‘spaldeen’ (a pink ball made by the Spalding
company), if by dint of one’s personal efforts the ball got lost down the sewer, some friend
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was sure to say ironically, ‘Hey, Einstein.’ So, I felt excited: I had independently arrived at an
opinion of quantum theory which turned out to be the opinion of the great Einstein.

However, I also had an inordinate respect for the authors of textbooks. For example, the
authors of history textbooks explained the mistakes and bad behaviour in the past so clearly
that I was sure they would not be repeated, and I had found it comforting that the world
therefore had to be getting better. And, the authors of technical textbooks were right, as I
knew from electrical engineering, where we checked out everything they said in innumerable
labs. So, into my mind immediately flashed a conflict.

But, the next thing Professor Villars said was that, although in the textbook Bohm had
said that Einstein was wrong, after he had stopped writing the book, Bohm had said that
Einstein was right. He had then gone on to write papers in which something is revealed behind
quantum theory (Hamlet, Act I, Scene V: ‘There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy’). So, the conflict was resolved: both Einstein and the
textbook author were of my opinion. I went off and read the textbook on the EPR paradox,
and read Bohm’s papers [3]. I did not understand either very well. But, I did get this much: I
had concluded that no one was ever going to tell me where the particles were and—there were
the particles!

When I finished my engineering degrees, I decided to go for a PhD in physics, in large
part because I wanted to see what was behind quantum theory. I stayed at MIT but, just as in
the Electrical Engineering Department, where I was very interested to learn how radios work
and, in 5 years, could never take a course to tell me that, in the Physics Department there
was never a course which taught what I wanted to know. When I mentioned my interest to
my prospective thesis advisor, he changed the subject. So, having taken quantum field theory
courses from Professors Silvan Schweber and Kenneth Johnson, all I was fit for was to do
something in particle physics. After getting my degree, I went to teach at Harvard but, after
trying, I could not work up enthusiasm for Regge poles and bootstraps.

Even back in the early 1960s, the qubit played a role in the field of foundations of quantum
theory—most universities had 0 people interested in the subject, but occasionally there was
1. At Harvard, I found Wendell Furry and, with his encouragement, wrote my first paper
entitled ‘Elimination of the reduction postulate from quantum theory and a framework for
hidden variable theories’. It was really two papers.

The first argued that the reduction (collapse) postulate of the Copenhagen school is ill-
defined, since it never precisely specifies when and why the state vector should be reduced.
However, it must be reduced (e.g., following a completed experiment) if one interprets the
state vector as corresponding to reality, since a superposition of macroscopic states does not
correspond to reality. One can eliminate the ill-defined collapse postulate if one gives up
the reality interpretation and replaces it by the ensemble interpretation (that the state vector
corresponds to an ensemble), Einstein’s favoured interpretation. (I did not appreciate then,
as I do now, that the which, the states which make up the ensemble, are generally ill-defined,
no less than the collapse postulate’s end states.) But, the ensemble interpretation entails that
quantum theory does not describe individual objects and, since we know that individual objects
exist, this encourages looking for a (so-called hidden variables) theory which does describe
individual objects.

So, the second argument set out an abstract framework for hidden variables theories. I
gave an example of that framework for a two-state quantum system. (The hidden variable
space is the surface of a sphere: when a spin state vector points in the direction n̂, this means
a physical system is represented by a hidden variable point r̂ on the upper hemisphere with
n̂ as its ‘north pole’ and that point is occupied with probability n̂ · r̂/π . When the spin is
measured in a direction m̂, the outcome will be ‘up’ if the hidden variable point lies in the
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upper hemisphere with m̂ as its north pole and ‘down’ if the hidden variable point lies in the
lower hemisphere.) My problem was that, for the life of me, I could not find an example which
fitted my framework for a three-state (or higher) quantum system.

I sent the preprint to various people and was excited to receive replies from John Bell
and Eugene Wigner! Bell suggested that I look at a paper by Gleason [4], so I learned that I
was never going to find a higher state generalization of my framework (in current language,
my framework demanded non-contextuality). So, I dropped the second part of the paper and
enlarged the first half, taking into account questions raised by Wigner, and called it ‘Alternative
to the orthodox interpretation of quantum theory’ [5].

(I later heard that eventually someone else found my two-state model. This experience
with a hidden variables model based upon the surface of a sphere led me to introduce what
is now called the ‘detection efficiency loophole’ [6], based upon a hidden variables model
whose hidden variables space is the interior of a sphere. Here, a way around Bell’s inequality
is suggested if the pair of spin-1/2 particles which reach rather inefficient detectors have three
choices, ‘spin up’, ‘spin down’ and ‘undetected’, and the ‘undetected’ data is discarded.)

2. Dynamical wavefunction collapse

There was then a conflict in my mind. On the one hand, because my elegant framework for a
hidden variables theory could not work, I was down on hidden variables theories, even down
on the deBroglie–Bohm pilot wave model which had excited me so much. I thought that
quantum theory was more elegant and general than the hidden variables theories I had seen
or could imagine. On the other hand, while I believed that the ill-defined collapse postulate
was the Achilles heel of quantum theory, I came to doubt the alternative I had argued for, the
ensemble interpretation, because I thought that quantum theory worked so well it ought to be
a description of individual reality.

I started to think about whether one could make collapse well defined, when a paper by
Bohm and Bub [7] came out, ‘A proposed solution of the measurement problem in quantum
mechanics by a hidden variable theory’. In it, the authors provided a dynamical equation to
describe state vector collapse. The final state of collapse is determined by Wiener–Siegel [8]
hidden variables (essentially, the hidden variables are vectors in a Hilbert space like that in
which the state vector resides).

The idea of replacing the collapse postulate by collapse dynamics was just the thing I was
looking for. I knew of the Wiener–Siegel hidden variables but, although elegant, they did not
satisfy my framework and I did not believe they really existed either. I thought that, instead of
hidden variables, something random in the Schrödinger equation would be more appropriate
to determine the final state of collapse, since many things exist in nature which behave in
random fashion.

I thought of attacking the problem, of finding an appropriate collapse dynamics, in three
stages. The first stage was to find minimal conditions, on the probability which describes the
ensemble of collapsing state vectors, sufficient to entail collapse. The second was to find an
evolution equation, for this probability, which satisfies the minimal conditions. The third, and
hardest, stage was to modify Schrödinger’s equation by adding something random, to thereby
obtain an ensemble of collapsing state vectors, whose probability would obey the evolution
equation. The first stage turned out simply, which was encouraging. Idealized, a collapse
evolution is

|ψ, 0〉 =
N∑

n=1

cn(0)|an〉 → |ψ, t〉 =
N∑

n=1

cn(t)|an〉 → |ψ,∞〉 = cm(∞)|am〉. (1)
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In equation (1), |an〉 is an orthonormal preferred basis, to one of which states, |am〉, the state
vector eventually collapses and |cm(∞)|2 = 1: this end result is to occur for a fraction |cm(0)|2
of the evolutions.

If one defines xm(t) ≡ |cm(t)|2, the probability density P(x1, . . . , xN , t) of the values
x1, . . . , xN occurring at time t can be used to characterize the behaviour of the ensemble.
Defining

f (x1(t), . . . , xN(t)) ≡
∫ 1

0
dx1 · · · dxNf (x1, . . . , xN)P (x1, . . . , xN , t),

collapse behaviour is ensured if

P(x1, . . . , xN , t) ∼ δ(x1 + · · · + xN − 1), (2a)

xn(t) = xn(0) (martingale property), (2b)

lim
t→∞ xm(t)xn(t) → 0 for n �= m. (2c)

To see this, first note from (2c) that the only way the integral of xmxnP � 0 can vanish is if
P(x1, . . . , xN ,∞) has delta function behaviour where xm = 0 or xn = 0 or both = 0. Since
this is true for all m �= n,

P(x1, . . . , xN ,∞) =
N∑

n=1

Knδ(x1)δ(x2) · · · δ(xn − 1) · · · δ(xN),

where Kn’s are constants and (2a) has been used. Finally, applying this to (2b) at t = ∞
gives the constants: Kn = xn(0). Thus, at t = ∞, there are N possible outcomes where all
but one of the x’s vanishes. The nonvanishing xn(∞) = 1 occurs with probability xn(0): that
is collapse behaviour.

The next stage turned out to be pretty simple too. Because all xn’s must be treated
symmetrically, it suffices to start with a two-state system and generalize the result. The idea
is to look for a Fokker–Planck equation which gives the detailed behaviour of P(x1, x2, t):

∂P (x1, x2, t)

∂t
= −

2∑
n=1

∂vn(x1, x2)P

∂xn

+
2∑

m,n=1

∂2Anm(x1, x2)P

∂xn∂xm

and find the quantities vn,Anm (a symmetric matrix with non-negative eigenvalues) which
entail the properties (2). By multiplying by xn and integrating over the square 0− � x1, x2 � 1+

(actually, by (2a), P only has support on the line x1 + x2 = 1 within this square) one obtains,
following integrations by parts,

∂xn(t)

∂t
= vn(t).

Thus, vn = 0 in order to satisfy (2b) with arbitrary P.
Condition (2a) requires P(x1, x2, t) = δ(x1 + x2 − 1)p(x1, x2, t) to be a solution, and

vanishing of the terms involving second and first derivatives of the delta functions results in
the form

∂p(x1, x2, t)

∂t
=

(
∂

∂x1
− ∂

∂x2

)2

A(x1, x2)p(x1, x2, t), (3)

in which one is free to set A(x1, x2) = A(x1, 1 − x1) ≡ A(x1) � 0 and p(x1, x2, t) =
p(x1, 1 − x1, t) ≡ p(x1, t), so (3) is equivalent to

∂p(x1, t)

∂t
= ∂2

∂x2
1

A(x1)p(x1, t). (4)
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If A(x1) is a constant, (4) is the ordinary diffusion equation, for which probability is not limited
to the range 0 � x1 � 1 but spreads over the whole real line. Thus, the equation has to be
supplemented by absorbing boundary conditions at x1 = 0, 1. However, if one sets A(x1) = 0
at x1 = 0, 1, then (4) automatically provides its own absorbing boundary conditions, since the
diffusive motion then vanishes at the boundary.

To see how (2c) can be fulfilled, multiply (4) by x1(1 − x1) and integrate by parts over
0− � x1 � 1+ to obtain

dx1(t)(1 − x1(t))

dt
= −2A(x1(t)). (5)

For example, if A(x1) = αx1(1−x1) then, according to (5), x1(t)x2(t) = x1(0)x2(0) exp −2αt ,
and (2c) is satisfied.

More generally, (5) implies that xn(t)(1 − xn(t)) must keep decreasing until such time
T when A(x1(T )) = 0. Since xn(t)(1 − xn(t)) � 0, this must occur. But, A(x1(T )) = 0 is
only possible if, at t = T , the probability concentrates (has all of its nonvanishing measure)
where A(x1) = 0. Thus, if it is assumed that A(x1) only vanishes at the boundary x1 = 0, 1,
the probability at T must have the form p(x1, T ) = K1δ(x1) + K2δ(1 − x1). But, this implies
x1(T )(1 − x1(T )) = x1(T )x2(T ) = 0, and (2c) is satisfied.

The N-state diffusion equation which generalizes (3) is

∂p(x1, . . . , xN , t)

∂t
=

N∑
n,m=1

(
∂

∂xn

− ∂

∂xm

)2

Anm(xn, xm)p(x1, . . . , xN , t), (6)

where Anm(xn, xm) only vanishes at xn = 0, xm = 0 and is positive elsewhere.
Now came the hardest task, constructing a modified Schrödinger equation with something

random in it, whose ensemble of solutions satisfies (6). I thought to use, as the random
variables, the initial phase angles of the amplitudes multiplying the states in a macroscopic
superposition. The advantage was that no new variables needed to be added to quantum theory.
I expected that the term added to Schrödinger’s equation would be nonlinear in the amplitudes,
and it would keep roiling the phases so that they evolved in random fashion. But, I did not
know any formalism which, given a guessed nonlinear term, with the assumption of random
initial phases, would enable me to find the associated Fokker–Planck equation.

At this point, it was time for me to go on my first sabbatical. I wrote to John Bell, inquiring
whether I could spend my year at CERN and, in a letter sent on April 27, 1972, he wrote back:

‘If you were to come to CERN I think you would find in me a kindred spirit, but you
might not find any others . . . . My own occasional excursions into other fields are
tolerated aberrations rather than normal activities.’ . . .

and suggested that I contact Josef Jauch at the University of Geneva. So, that was where I spent
my sabbatical year. Both Jauch and Bell were interested and encouraging, but neither they
nor anyone else I encountered could help me go further, and I spent my sabbatical working at
something else.

But, about a year later, while browsing by chance through the COOP bookstore in Harvard
square, I found—on sale!—a book by Prigogine [9], and I later encountered the Dover book
which contains a 1943 review by Chandrasekhar [10]: I had two different sets of tools. Using
either, in the notation of equation (1), I found that the dynamical equation

i
dcn(t)

dt
= ωncn + (c∗

n(t))
−1(cn(t))

r

N∑
m=1

αnm(c∗
m(t))r (7)
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(where ωn ≡ 〈an|H |an〉 and αnm is a Hermitian matrix) leads to equation (6) with
Anm(xn, xm) ∼ |αnm|2(xnxm)r . So, I finally wrote a paper on all this [11]. I was fortunate
in my referee, Fred Belinfante, who telephoned me to ask some questions, so that he could
submit an unquestioningly positive report, for he said that any negative remark would be taken
by the editors of Physical Review as an excuse not to publish the paper. He later sent me an
autographed copy of his book [12]!

In those days, it was frequently difficult for work which considered alternatives to quantum
theory to receive fair consideration (this has only somewhat abated). Paradoxically, physicists
who are often radical thinkers are quite conservative when it comes to questioning the validity
of their bread and butter, standard quantum theory.

3. Stochastic differential Schrödinger equation

The methods of Prigogine and Chandrasekhar were rather complicated and entailed some
assumptions. I gave up on the random phases, the idea that nothing extra had to be added to
quantum theory to explain collapse. I considered putting a new physical variable, randomly
fluctuating but (for now) otherwise unspecified, into the modified Schrödinger equation and
went to the shelves in my college’s library looking for a way to analyse differential equations
with something random in them. I found, to my surprise and delight, two books on stochastic
differential equations [13, 14]. I had never heard of stochastic d.e.’s before.

These are equations of the form

dxn(t) = Gn(x1, . . . , xN , t) dt +
N∑

m=1

Fnm(x1, . . . , xN , t) dBm(t), (8)

where Bm(t) are independent Brownian motion functions (dBn(t) dBm(t) = σ 2δnm dt) and
dBm(t)/dt = wm(t) are independent white noise functions. I devoured the books. Working
with stochastic d.e.’s was fun, like doing magic. There are two forms, one due to Stratonovich,
the other due to Itô, each readily convertible into the other, differing, respectively, in the
definition of F(x, t) dB(t), so that F(x, t) dB(t) �= 0 or = 0. Each form has its advantages.
The Stratonovich form allows one to integrate equations using the ordinary rules of calculus.
From the Itô form one can just pluck out the Fokker–Planck equation governing the probability
describing the ensemble of solutions, i.e., equation (8) implies

∂P (x, t)

∂t
= −

N∑
n=1

∂GnP

∂xn

+
σ 2

2

N∑
m,n=1

∂2 ∑N
k=1 FnkFmkP

∂xn∂xm

. (9)

Using this, it was possible to show [15] that amplitudes obeying

i
dcn

dt
= ωncn +

cn

c∗
n

N∑
m=1

αnmwnmc∗
m (10)

lead to (6) with Anm(xn, xm) = (σ 2/2)|αnm|2xnxm (compare equation (7) with r = 1, which I
had come to favour because of its simplicity). In equation (10), wnm(t) is a Hermitian matrix
of independent white noise elements and dBmn(t) dB∗

rs(t) = σ 2δmrδns dt .
This idea, of adding a stochastic term to the Schrödinger equation so that it becomes a

stochastic differential equation, has proved very fruitful, not only to describe collapse, as shall
be enlarged upon, but for other purposes as well [16].
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I soon found a charming analogy for this collapse dynamics [17], useful for providing
an intuitive and non-technical explanation of how it works. I happened to be browsing
in Feller’s book on probability [18] (a favourite textbook, from an undergraduate course
taught by Stanislaus Ulam) when I encountered the gambler’s ruin game. Two gamblers,
initially possessing, respectively, a fraction x1(0), x2(0) of their combined wealth (so
x1(0) + x2(0) = 1) repeatedly toss a fair coin, and the result, heads or tails, determines
which one gives a dollar to the other. They play until one gambler loses all his money, and the
game ends. The analogy is that the amount of money possessed by one gambler at any time
is proportional to the squared amplitude of one of two states whose sum is the state vector
representing the physical system undergoing collapse. Just as one gambler loses all his money,
so one of the states loses all its amplitude, and as the other gambler wins all the money, so the
state vector ends up as totally described by the other state.

Let Q(x) be the conditional probability that a gambler wins the game, given that he has
the fraction x of the total wealth. If � is the fraction of the total wealth they exchange at each
toss (i.e., � = $1/total dollars), the difference equation

Q(x) = 1
2Q(x − �) + 1

2Q(x + �)

expresses that there are two routes to win if one has fractional wealth x, namely lose the next
toss and drop to x − � but win thereafter, or win the next toss and rise to x + � and win
thereafter. The solution of the difference equation is Q(x) = Ax + B, where A and B are
constants. Since Q(0) = 0 (because you cannot win if you have no money) and Q(1) = 1
(because you have won if you have all the money), then Q(x) = x.

That is, if one starts with the fraction x = x(0) of the money, one has the probability x(0)

of attaining all the money, x = 1, which is collapse behaviour. The game can be modified
to have many players, to have � change as the game progresses (e.g., to get smaller as one
gambler gets closer to losing, so as to mimic Anm(xn, xm)’s decrease as its arguments approach
zero), etc. So, one may think of quantum collapse as a gambler’s ruin competition among the
states in a superposition, to see which final state wins the game.

Indeed, this is just random walk with absorbing barriers. In an appropriate limit where
the time between tosses get infinitesimal along with � so that it becomes a time-continuous
process, it is described by equation (6).

4. Problems

At this point, how did the collapse program stand? Although I had found a solution to the
three-stage problem I had set for myself, truth to tell, my dynamical collapse was as ill-defined
as the Copenhagen collapse postulate. I had vaguely thought when I had begun that the
constraints would be so severe that they would point the way to a unique solution. Instead,
the constraints were not so severe, there was left an array of choices to be made, and I had not
a physical principle or principles to rely upon to make those choices.

What should be the choice of the diffusion matrix Anm(xn, xm)? I had made the simplest
choice, but others were certainly possible and, even then, what were the matrix elements αnm

to be? In [11], I wrote ‘ . . . the operator A must have nonvanishing matrix elements between
states that are macroscopically distinguishable, and so probably will be a nonlocal operator.
The magnitudes |αnm| along with σ determine the reduction rate. The rate cannot be too fast, or
else the usual quantum predictions will be interfered with. It also cannot be too slow, or else it
will predict that a system can be observed in a superposition of macroscopically distinguishable
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states. Perhaps, the matrix element magnitudes should be small for a microscopic system, but
large for a macroscopic system. Since a macroscopic system may be thought of as composed
of many microscopic systems, such a limitation in magnitudes may act as a constraint on the
form of the matrix elements.’ In [15], I wrote ‘ . . . we conjecture . . . that the magnitude of
matrix elements of A depends only upon the macroscopic distinguishability of appropriate
position variables characterizing the states.’ But, these are qualitative statements. I did not
know how to choose A. This might be called the interaction problem.

Collapse models are phenomenological models, justified because they provide an
explanation of the existence of the world around us and the events that take place in it. In [15], I
went on, ‘But, ultimately, a theory such as this needs to be legitimized by being a consequence
of a larger theory that has more ties to established physics. In what areas might such a theory
arise? . . . A . . . is a nonlocal long-range interaction between a system and itself. This carries
the connotation of relevance to self-energy considerations, and perhaps gravitational theory.
Indeed, it is an attractive thought that the juncture between general relativity, which describes
events but does not describe microscopic behavior, and quantum theory, which describes
microscopic behavior but does not describe events, might be an appropriate place to look.’
Call this the legitimization problem.

What should be the states |an〉 which are the end products of collapse? This same problem
is encountered in standard quantum theory, in applying the collapse postulate, so dynamical
collapse was no improvement, in this respect. It was clear that the preferred macroscopic states
had to be spatially localized, since that is what we see. However, the preferred basis could
not be the position basis since that has infinite average energy and it could not be achieved
anyway since the competing Schrödinger part of the evolution would spread a highly localized
wavefunction. For dynamical collapse to be an improvement over postulated collapse, the
theory should specify the preferred basis. So, I came to call this the preferred basis problem.

Associated with the preferred basis problem is another problem [19]: ‘ . . . we point out
that dynamical reduction . . . can violate conservation laws . . . . This is a serious problem for
quantum theory with a reduction postulate. For a dynamical reduction theory it raises intriguing
possibilities of deeper insights into the nature of the theory—for example, the possibility that
the fluctuating medium that causes the reduction may exchange energy and momentum with
the quantum system, or the possibility of rules for choosing the preferred basis states so that
conservation law violation is minimized.’ So, add to the list the conservation law problem.

What turns the collapse dynamics on? I expected that the correct choice of A would
do it [20]: ‘This coupling is expected to increase as the states it couples become more
macroscopically different: perhaps it is an increasing function of particle separation and
particle masses.’ My question to Professor Villars should have the answer that, as with
classical physics, you only need to apply initial conditions once. One should be able to start
with an initial state vector and let the modified Schrödinger equation take over from there,
with collapse automatically occurring as needed, the outcome determined by the particular
white noise function used in the Schrödinger equation. But, I did not have the right A, so I
manually turned up the interaction when needed and turned it down when not needed. In a
satisfactory theory, that ought to happen automatically. I came to call this the trigger problem.

What experiments can test the predictions of a collapse theory against those of standard
quantum theory? The obvious test is interference. Suppose an object can be put into a
superposition of two states, say with equal amplitudes, and that these states then start to
play the collapse game. After a while, the amplitudes of the states will not be equal. If
an interference measurement on the superposed state is performed for an ensemble, the
interference pattern will not have the same contrast as the pattern would have if the amplitudes
had remained equal. I spent my second sabbatical in 1981–1982 at Oxford, invited by Roger
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Penrose who had just written an article arguing that a satisfactory quantum theory of gravity
ought to entail collapse [21]. Roger received an invitation to attend a conference in Perugia
in the Spring, honouring the 90th birthday of Louis de Broglie, and suggested that I attend in
his stead. Anton Zeilinger attended the conference and told me about a recently completed
two-slit neutron interference experiment [22]. As might be expected, the data are consistent
with standard quantum theory’s prediction, to the experimental accuracy, about 1%. But,
that does not preclude the possibility that another interference experiment, perhaps one of
higher accuracy or one which involves interference of a larger object, might not reveal a
discrepancy with standard quantum theory’s prediction. Indeed, data from that experiment
enable estimation of a lower limit for the neutron’s collapse time of only 5 s [23]. Can one
perform an interference experiment, or some other kind of experiment, to definitively confirm
or rule out dynamical collapse? Call this the experimental problem.

Also at this conference in Perugia was Nicolas Gisin, who came with his thesis advisor
Constantin Piron, whom I had met in Geneva on my first sabbatical. Nicolas became interested
in this line of research and soon published an example of a stochastic Schrödinger equation, in
discussing a dynamical implementation of the von Neumann and Luders projection postulates
[24]. I pointed out that the collapse time in his example takes an infinite amount of time [25].
It is the aim of collapse dynamics to provide a state which corresponds to physical reality—a
slogan I like is that what you see (in nature) is what you get (from the theory). Abner Shimony
had argued to me that, for a state which is a superposition of macroscopically distinguishable
states, even if the amplitude of one state is huge compared to the others, it is philosophically
objectionable to say that the physical reality corresponds to that one state. Only a finite mean
collapse time for the ensemble ensures that there are no tails (other smaller amplitude states
in the superposition). This situation has come to be called the tails problem.

I had seized upon that as a possible physical principle. In this respect, the dynamical
equation (7) with r = 1 (the choice made in (10)), where the diffusion matrix is proportional to
x near x = 0, is preferable because the mean collapse time is finite [27]. In Gisin’s example, the
diffusion matrix is proportional to x2 near x = 0, such a slow diffusion that the mean collapse
time is infinite. Gisin’s reply [26] acknowledged the tails problem, but introduced a new and
important physical principle. It is possible to construct a given density matrix from various
different ensembles of state vectors. As the density matrix then evolves, Gisin remarked that
it ought to evolve in precisely the same way no matter how it was initially formed for, if not,
by a judicious local choice of a portion of an entangled state vector, it could be possible to
communicate superluminally if the ensemble behaviour far away depended upon that choice.
My models did not have the density matrix evolving independently of its initial constitution.
Up to then, I had never even thought about the behaviour of the ensemble of state vectors,
so fixated was I upon the problem of making sure that each individual state vector collapsed.
I then showed that, for there to be no superluminal communication in certain experimental
situations, the mean collapse time in dynamical collapse models has to be infinite [28]. Thus,
resolution of this superluminal problem must give rise to the tails problem.

At the end of my stay in Oxford, John Bell wrote on 7 July 1982: ‘It is now clear that I
will not get to England again while you are there, so we unfortunately miss each one another
on this occasion. Your nonlinear work is the most serious that I know of, and I wish you great
success in continuing it. It is not so much relativistic invariance that I hope for eventually
(I suspect it is impossible) but a theory covering nevertheless somehow the phenomenon of
relativistic quantum theory.’ So, add the relativity problem.

In the remainder of this paper, I shall address progress made on resolving four of these
problems and one other problem which later arose (see the next section). The sequel to this
paper shall address the remaining five problems.
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5. Spontaneous localization

In 1986, John Bell sent me a preprint [29] which introduced me to the ingenious, insightful,
and, indeed, courageous, paper of GianCarlo Ghirardi, Alberto Rimini and Tullio Weber [30]
describing their ‘spontaneous localization’ (SL) model2. I shall content myself with giving a
qualitative description of the SL model, since it is my expectation that it will be given a full
presentation elsewhere in this volume.

It is a model which invokes instantaneous collapse but, unlike the ill-defined Copenhagen
postulate of instantaneous collapse which depends upon the imprecise notion of a
‘measurement’, it gives a precise prescription. At random times (with suggested rate λ ≈
10−16 s−1), a normalized wavefunction describing matter containing N particles (electrons and
nucleons) is suddenly multiplied by a Gaussian ∼ exp − [(xn − z)/2a2], and then normalized
back to 1, where xn is the coordinate of one of the N particles, z is randomly chosen according
to a certain rule (see below) and the suggested width a ≈ 10−5 cm. I came to call this
multiplication a ‘hit’, rather than a ‘spontaneous localization’, thereby saving a mouthful of
syllables. Each particle is independently hit at the same rate λ. z may be called the centre
of the hit. The probability of a hit taking place with centre at z is proportional to the integral of
the squared magnitude of the wavefunction after the hit (but before re-normalization). Thus,
the hit centres are most likely located where the wavefunction is largest.

A single particle in a state which is the superposition of two spatially separated wave
packets (separation much more than a) will, after a hit, most likely be in a state which
corresponds to one of the packets (although altered in shape, and altered in spread if its spread
had been larger than a), albeit with a small tail of the other packet. The rate of hits for
the single particle is so slow that such single-particle or few-particle superpositions as occur
in laboratory experiments will be seldom (and, so, unmeasurably) affected. However, for a
macroscopic object in a state of superposed positions, because of the entangled nature of such
a wavefunction, one hit on one particle suffices to collapse the whole object’s wavefunction
to one of those positions, albeit with a small tail of the other position. Since all particles
experience hits at the same rate, the collapse rate is Nλ, which can be quite rapid for an object
with a sufficient number of particles.

The SL model resolves the interaction, trigger, preferred basis and superluminal problems.
For the trigger problem, the collapse mechanism is always working and automatically is slow
for small objects and fast for large ones. For the preferred basis problem, the preferred basis is
‘sort of’ the position basis, i.e., the position basis modulo a (and this choice gives a resolution
of the interaction problem). The superluminal problem is resolved for, as the authors show,
the SL density matrix evolution depends only upon the initial state.

I thought the SL model was wonderful: I had been stumped on how to resolve the trigger
and preferred basis problems and here they were so cleverly demolished. I also thought it
was courageous, because the authors realized that the problems they solved were so important

2 In the review article [31], Ghirardi presents ‘ . . . a brief review of the historical development of dynamical reduction
models. The history goes back to the years 1970–1973, when G C Ghirardi, L Fonda, A Rimini and T Weber were
working on quantum decay processes and in particular on the possibility of deriving, within a quantum context, the
exponential decay law. Some features of their approach have been extremely relevant for the subsequent elaboration
of the dynamical reduction program,’ and goes on to specify some features. I am sure this earlier work was helpful
to the authors in constructing the SL model, but it is not part of the history of dynamical reduction. It is part of their
intellectual history, just as section 1 is part of my intellectual history. Indeed, the 1973 work he cites contains no
mention of dynamical reduction (it applies, to decaying particles, the reduction postulate of the Copenhagen scheme,
brought about as usual by interaction of the particles with an apparatus). Nor does [30] contain any mention of the
cited 1973 work. Reference [30] does mention Barchielli A, Lanz L and Prosperi G M 1982 Nuovo Cimento B 72
79 and 1983 Found. Phys. 13 779 which introduced a hitting process (a feature adopted in SL) to model repeated
position measurements.
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that the work should be published in spite of problems which were not solved and, indeed,
were made more explicit. With regard to the conservation law violation problem, the hitting
process narrows wavefunctions and so, by the uncertainty principle, leads to increased energy
of particles (although the values of the parameters λ and a were chosen with an eye to keeping
that small). And, the model introduced a new problem, the symmetry problem, because the
hitting process is not symmetric with respect to all particles, and so destroys the antisymmetry
of the fermionic wavefunction. The tails problem is obviously there.

The SL collapse process is not described by a modified Schrödinger equation. The usual
unitary Schrödinger state vector evolution occurs in between the abrupt SL alterations: the two
processes take place independently, working ‘alongside’ each other, so to speak. I wondered
if it was possible to have them work together.

6. Continuous spontaneous localization

It was time for my next sabbatical. I again wrote to John Bell, on 13 November 1986, asking
if it was appropriate to go to CERN or, if not, did he ‘ . . . think that Professors Ghirardi,
Rimini or Weber might be interested in inviting me . . . ’ and he replied on 13 November:
‘Unfortunately, the CERN Theory Division is more ruthlessly than ever dedicated to the main
lines in elementary particle physics. And most of my own time in the next few years are likely
to be devoted to rather practical things concerning accelerator design. I think you would feel
isolated and frustrated here (and I also, if you were here, would be frustrated by not being able
to talk with you as much as I would like). So I have written to Ghirardi and Rimini, who are
the senior men in that collaboration, and enclosed copies of your letter. I do not know them
personally, but over the years have seen many very sensible papers by them, so that I have a
very good opinion of them. I very much hope that one or the other will be able to invite you,
to Trieste or Pavia.’

It was arranged that I spend 3 months in Trieste with GianCarlo and 1.5 months in Pavia
with Alberto. It was, personally and professionally, one of the happiest times of my life.
GianCarlo and his wife Laura, and Alberto and his wife Silvana, were wonderfully warm and
welcoming to myself and my wife Betty. GianCarlo and I worked hard, but to no avail, on
constructing a relativistic SL-type collapse model. But, along the way, I had an idea about how
to combine their instantaneous collapse model with my continuous collapse formalism. Near
the end of my stay in Trieste we went to Padua to hear a talk by John Bell, and he was very
supportive. So, when I got to Pavia, Alberto encouraged me to work on my idea. It was one
of those rare golden veins and, in 17 days, I had written a paper containing what I called the
continuous spontaneous localization (CSL) model [32] (which I felt was an appropriate name
since it entailed a combination of crucial aspects of my prior work on continuous collapse and
the SL model).

In CSL, the state vector evolution depends upon a fluctuating field w(x, t) of white noise
type. There are two equations. One, a linear Schrödinger-type evolution, surprised even me,
for it had seemed a truism that the collapse evolution had to be nonlinear in the state vector.
The other is an expression for the probability associated with that evolution, and it is this to
which the nonlinearity is relegated.

I had couched the CSL model in the language of stochastic differential equations, but it is
simpler to understand it, and often to work with it, if written as follows. The simplest example
of an initial state vector

|ψ, 0〉 =
N∑

n=1

cn|an〉
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(the |an〉 are eigenstates of an operator A with nondegenerate eigenvalues an) evolving to one
of the |an〉 is

|ψ, t〉w ≡ exp

(
−(4λ)−1

∫ t

0
dt ′[w(t ′) − 2λA]2

)
|ψ, 0〉

=
N∑

n=1

cn|an〉 exp

(
−(4λ)−1

∫ t

0
dt ′[w(t ′) − 2λan]2

)
, (11)

where w(t) is a random function of white noise type and λ characterizes the collapse rate.
The model is comprised of equation (11) and the rule that the probability associated with
|ψ, t〉w is

Pw(t)Dw ≡ w〈ψ, t |ψ, t〉wDw =
N∑

n=1

|cn|2 exp

(
−(2λ)−1

∫ t

0
dt ′[w(t ′) − 2λan]2

)
Dw (12)

(Dw ≡ C dw(0) dw(�t) dw(2�t) · · · dw(t), and C = (2πλ/�t)−t/�t so that the integrated
probability (12) is 1). The density matrix constructed from (11), (12) is thus

ρ =
∫

Pw(t)Dw
|ψ, t〉w w〈ψ, t |
w〈ψ, t |ψ, t〉w =

N∑
n,m=1

cnc
∗
m|an〉〈am| e−(λt/2)(an−am)2

, (13)

from which one can see that the off-diagonal elements decay. This is necessary behaviour
if the individual state vectors which make up the ensemble undergo collapse, but it is not
sufficient.

Here, without proof [33], is how collapse works for the individual state vectors. If
T −1

∫ T

0 dt ′w(t ′) → 2λan as T → ∞, then

lim
t→∞ exp − (2λ)−1

∫ t

0
dt ′[w(t ′) − 2λan]2

has non-zero measure, while all the other Gaussians asymptotically have vanishing measure.
(For any other w(t) behaviour, all Gaussians have vanishing measure.) Call a w(t) in this
class wn(t). For a wn(t), equations (11) and (12) become, for large T,

|ψ, t〉w ≈ cn|an〉 exp

(
−(4λ)−1

∫ t

0
dt ′[w(t ′) − 2λan]2

)
, (14)

Pw(t)Dw ≈ |cn|2 exp

(
−(2λ)−1

∫ t

0
dt ′[w(t ′) − 2λan]2

)
Dw. (15)

Thus, (14) is a (unnormalized) collapsed state (with a tail, not shown), and the integral of
(15)’s probability over all wn(t)’s is |cn|2 (with a tail contribution).

For many mutually commuting operators Ak , and with a possibly time-dependent
Hamiltonian H(t) to boot, the evolution (11) becomes

|ψ, t〉w ≡ T exp

(
−

∫ t

0
dt ′

{
iH(t ′) + (4λ)−1

∑
k

[wk(t
′) − 2λAk]2

})
|ψ, 0〉 (16)

(T is the time-ordering operator).
For CSL, I proposed that the index k correspond to spatial position x, so that wk(t) →

w(x, t) can be regarded as a physical field, and that Ak → A(x) be the particle number density
operator—which, because of experimental evidence discussed in the companion to this paper,
is now to be taken proportional to the mass density operator M(x)—‘smeared’ (using the SL
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idea) over a region of length a around x:

|ψ, t〉w ≡ T exp

(
−

∫ t

0
dt ′

{
iH(t ′) + (4λ)−1

∫
dx[w(x, t ′) − 2λA(x)]2

})
|ψ, 0〉, (17)

A(x) ≡ 1

m0(πa2)3/4

∫
dz exp

(
− 1

2a2
(x − z)2

)
M(z) (18)

(m0 is taken to be the proton’s mass).
The dynamical equation (17) and the probability rule (the first equation in (12)) constitute

the CSL model, which can be applied to any non-relativistic physical system. CSL works
by recognizing a superposition of states which differ in their distribution of mass density and
conducting a gambler’s ruin-type competition among them.

Since operation by M(x), and therefore (18), maintains the antisymmetry of a fermionic
wavefunction, CSL solves the symmetry problem (which had been much on my mind because
Alberto and GianCarlo were having difficulties resolving it by a modified hitting process3). Of
course, CSL gives a solution to the interaction problem and, with it, the preferred basis problem
since it specifies a particular interaction with collapse towards mass density eigenstates. And,
since the density matrix evolution does not depend upon how the initial density matrix is put
together,

ρ(t) = T exp

(
−

∫ t

0
dt ′

{
iHL(t ′) − iHR(t ′) +

λ

2

∫
dx[AL(x) − AR(x)]2

})
ρ(0) (19)

(the subscripts L and R mean that the operators are to appear to the left or right of ρ(0), and
T time-reverse orders operators to the right), the superluminal problem is solved.

GianCarlo decided to visited Pavia over the weekend after I showed this work to Alberto
and, on Monday, they had nice things to say about it and some valuable ideas. They pointed
out to me, since I had not really appreciated it (so focused was I on the physical collapse
problem) that I had arrived at a way to obtain the general Lindblad–Kossakowski equation (the
most general Markovian density matrix evolution) from a stochastic Schrödinger equation,
and we decided to write a paper together on the general framework and its CSL application
[35]. Almost near the end of my stay in Pavia, we received a preprint from Gisin [36]4 who
had independently arrived at a single nonlinear stochastic Schrödinger equation, which we had
shown in [35] is equivalent to combining the general framework’s linear evolution equation
with the nonlinear probability rule. Lajos Diosi [37] and Slava Belavkin [38], in modelling
continuous observation, also arrived at a similar nonlinear formulation, at around the same
time. I later learned from Gisin [39] that, in obtaining the linear Schrödinger equation, I had
rediscovered something known to mathematicians as the Girsanov transformation.

CSL shows how the Schrödinger evolution and the collapse evolution can jointly be
described by a single evolution equation. For the nonlinear collapse process, CSL separates
out the nonlinear probability rule from the linear evolution. This is a simplification encouraging
generalizations, for example, a generalization from the Galilean invariant quantum mechanical
form of CSL to a relativisitically invariant quantum field theory form. Because of its linearity,

3 Dove and Squires [34] arrived at a hitting process which preserves symmetry. A hit with centre z involves
multiplication by [

∑
j mj exp − (xj − z)2/2a2]1/2, where mj is the particle’s mass. This has also been argued for by

Tumulka [34].
4 Soon after I had left Europe, Alberto and GianCarlo were invited by Nicolas to visit the University of Geneva and
GianCarlo gave a seminar on my work and our work together. Gisin’s subsequently published paper differs from his
preprint in the concluding section, where it gives CSL model dynamics, and at the end of an earlier section, where
generalization to mutually commuting operators Ak is given, whereas the preprint dealt with a single operator A.
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the collapse dynamics (17) can directly be expressed in terms of a unitary evolution [40],

|ψ, t〉w =
∫

Dη exp

(
−λ

∫ t

0
dt ′ dx′η2(x′, t ′)

)
exp

(
i
∫ t

0
dt ′ dx′η(x′, t ′)w(x′, t ′)

)

× T exp

(
−i

∫ t

0
dt ′

{
H(t ′) + 2λ

∫
dx′η(x′, t ′)A(x′)

})
|ψ, 0〉 (20)

(this is just the Fourier transform of (17), where η is the variable conjugate to w). The last line
in (20) is the unitary evolution of an initial state vector under the influence of a Hamiltonian
consisting of H plus the interaction of a spacetime-dependent c-number noise field η with the
smeared mass density operator A. So, according to (20), one may view collapse under the
field w as a superposition of such unitary evolutions, with a Gaussian weight depending upon
η and a phase dependent upon η and w.

Like SL and, indeed, stimulated by it, CSL gives a resolution for the interaction, preferred
basis, trigger and superluminal problems. It also resolves the symmetry problem raised by SL.
In a paper in honour of Abner Shimony, I shall continue discussing the problems remaining
in this list, the tails, experimental, conservation law, relativity and legitimization problems.
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